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Figure 1. Training with Contrastive Flow-Matching (CFM) improves natural image generation. (left is baseline, right is with CFM)
Here we show comparisons between images generated by diffusion models trained on ImageNet-1k (512× 512). Each pair of images is
generated with the same class and initial noise to ensure similar image structure for comparability. We see that our CFM objective encourages
significantly more coherent images and improves the consistency of global structure.

Abstract
Unconditional flow-matching trains diffusion models to

transport samples from a source distribution to a target dis-
tribution by enforcing that the flows between sample pairs
are unique. However, in conditional settings (e.g., class-
conditioned models), this uniqueness is no longer guaran-
teedflows from different conditions may overlap, leading
to more ambiguous generations. We introduce Contrastive
Flow Matching (CFM), an extension to the flow-matching
objective that explicitly enforces uniqueness across all condi-
tional flows, enhancing condition separation. Our approach
adds a contrastive objective that maximizes dissimilarities
between predicted flows from arbitrary sample pairs. We
validate Contrastive Flow Matching by conducting extensive
experiments across varying SiT model sizes on the popular
ImageNet-1 (256x256) and (512x512) benchmarks. Notably,
we find that training models with CFM (1) improves training
speed by a factor of up to 9×, (2) requires up to 5× fewer
de-noising steps and (3) lowers FID by up to 8.9 compared
to training the same models with flow-matching.

1. Introduction

Flow matching for generative modeling trains continuous
normalizing flows by regressing ideal probability flow fields

between a base (noise) distribution and the data distribu-
tion [23]. This approach enables straight-line generative
trajectories and has demonstrated competitive image synthe-
sis quality. However, for conditional generation (e.g., class-
conditional image generation), vanilla flow matching models
often produce outputs that resemble an “average” of the
possible images for a given condition, rather than a distinct
mode of that condition. In essence, the model may collapse
multiple diverse outputs into a single trajectory, yielding
samples that lack the expected specificity and diversity for
each condition [27, 41]. By contrast, an unconditional flow
model—tasked with covering the entire data distribution
without any conditioning—implicitly learns more varied
flows for different modes of the data. Existing conditional
flow matching formulations do not enforce the flows to differ
across conditions, which can lead to this averaging effect
and suboptimal generation fidelity.

To address these limitations and improve generation qual-
ity, recent work has explored enhancements to structure the
generator’s representations and also proposed inference-time
guidance strategies. For example, one approach is to in-
corporate a REPresentation Alignment (REPA) objective to
structure the representations at an intermediate layer with
those from a high-quality pretrained vision encoder [41]. By
using feature embeddings from a DINO self-supervised vi-
sion transformer [4, 29], the generative model’s hidden states
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Figure 2. CFM yields more discriminative and higher quality trajectories. (left) shows the result of standard flow-matching, where
flows are straight but end up overlapping for similar class distributions. (right) shows how the addition of the CFM objective results in more
distinct flows, resulting in images which are more representative of their respective classes.

are guided toward semantically meaningful directions. This
representational alignment provides an additional learning
signal that has been shown to improve both training conver-
gence and final image fidelity, albeit at the cost of requiring
an external pretrained encoder and an auxiliary loss term.
Another popular technique is classifier-free guidance (CFG)
for conditional generation [16], which involves jointly train-
ing the model in unconditional and conditional modes (often
by randomly dropping the condition during training). At in-
ference time, CFG performs two forward passes—one with
the conditioning input and one without—and then extrapo-
lates between the two outputs to push the sample closer to
the conditional target [16, 27]. While CFG can significantly
enhance image detail and adherence to the prompt or class la-
bel, it doubles the sampling cost and complicates training by
necessitating an implicit unconditional generator alongside
the conditional ones [10, 10, 18].

We propose Contrastive Flow Matching (CFM), a new
approach that augments the flow matching objective with
an auxiliary contrastive learning objective. CFM encourages
more diverse and distinct conditional generations. It applies
a contrastive loss on the flow vectors (or representations) of
samples within each training batch, encouraging the model
to produce dissimilar flows for different conditioning inputs.
Intuitively, this loss penalizes the model if two samples with
different conditions yield similar flow dynamics, thereby
explicitly discouraging the collapse of multiple conditions
onto a single “average” generative trajectory. As a result,
given a particular condition, the model learns to generate
a unique flow through latent space that is characteristic of
that condition alone, leading to more varied and condition-
specific outputs. Importantly, this contrastive augmentation
is complementary to existing methods. It can be applied
along with REPA, further ensuring that flows not only align
with pretrained features but also remain distinct across condi-
tions. Likewise, it is compatible with classifier-free guidance
at sampling time, allowing one to combine its benefits with

CFG for even stronger conditional signal amplification.
Inspired by contrastive training objectives, CFM applies a

pairwise loss term between samples in a training batch: for
each positive sample from the batch, we randomly sample
a negative counterpart. We then encourage the model to
not only learn the flow towards the positive sample but also
to learn the flow away from the negative sample. This is
achieved by adding a contrastive loss to the flow-matching
objective, which promotes class separability throughout the
flow. Our method is simple to implement and can be eas-
ily integrated into existing diffusion models without any
additional data and with minimal computational overhead.

We validate the advantages of CFM through extensive ex-
periments on conditional image generation using ImageNet
images across multiple SiT [27] model scales and training
frameworks [27, 41]. Thanks to contrastive flows, CFM con-
sistently outperforms traditional diffusion flow-matching in
quality and diversity metrics, achieving up to an 8.9-point
reduction in FID-50K. It is also compatible with recent sig-
nificant improvements in the diffusion objective, such as
Representation Alignment (REPA) [41]. By encouraging
class separability, CFM is able to efficiently reach a given
image quality with 5× fewer sampling steps than a baseline
Flow Matching model, translating directly to faster gener-
ation. It also enhances training efficiency by up to 9×. In
summary, our findings advance the field of diffusion-based
image generation by achieving state-of-the-art performance.

2. Related works
Our work lies in the domain of image generative models,
primarily diffusion and flow matching models. We augment
flow matching with a contrastive learning objective to pro-
vide an alternative solution to classifier free guidance.

Generative modeling has rapidly advanced through two
primary paradigms: diffusion-based methods [17, 36] and
flow matching [23]. Denoising diffusion models typically
rely on stochastic differential equations (SDEs) and score-
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based learning to iteratively add and remove noise [17]. De-
noising diffusion implicit models (DDIMs) [36] reduce this
sampling complexity by removing non-determinism in the
reverse process, while progressive distillation [32] further
accelerates inference by shortening the denoising chain. Ad-
vanced ODE solvers [5] and distillation methods [38] have
also enhanced sampling efficiency. Despite their success,
diffusion models can be slow at inference due to iterative
denoising [17].

Flow matching [5] has been designed to reduce infer-
ence steps. It directly parameterizes continuous-time trans-
port dynamics for more efficient sampling. Probability flow
ODEs [23, 36] learn an explicit transport map between data
and latent distributions. Unlike diffusion models, it bypasses
separate score estimation and stochastic noise, which re-
duces function evaluations and tends to improve training
convergence [5]. A common type of flow matching algo-
rithm popularized recently is the rectified flow [24], which
refines probability flow ODEs through direct optimal trans-
port learning, improving numerical stability and sampling
speed. This approach mitigates the high computational bur-
den of diffusion sampling while maintaining high-fidelity
image generation with fewer integration steps.

Since both diffusion and flow matching models are trained
to match the target distribution of real images, they often
produce ‘averaged’ samples that lack the sharp details and
strong conditional fidelity [15]. Regardless of how much
these models speed up, they often need to be invoked mul-
tiple times with unique seed noise to find a high-fidelity
sample. In response, guidance techniques have been in-
troduced to substantially promote high-fidelity synthesis.
Classifier guidance [11], classifier-free guidance [15], en-
ergy guidance [7, 25, 37, 42], and more advanced meth-
ods [8, 18, 19, 21, 35] improve fidelity and controllabil-
ity, without requiring multiple invokations. Although they
achieve remarkable performance, they typically still require
additional computational overhead. CFG requires calling
sampling from a second ‘unconditional’ generation and guid-
ing the ‘conditional’ generation away from the unconditional
variant [26, 39, 40, 43]. We adapt the flow matching objec-
tive with a contrastive loss between the transport vectors
within a batch. By doing so, we achieve the same benefits of
CFG, without the additional overhead of needing to train an
unconditional generator or using one during inference.

Contrastive learning was originally proposed for face
recognition [34], where it was designed to encourage a mar-
gin between positive and negative face pairs. In generative
adversarial networks (GANs), it has been applied to improve
sample quality by structuring latent representations [3]. How-
ever, to the best of our knowledge, it has not been explored
in the context of visual diffusion or flow matching models.
We incorporate this contrastive objective to demonstrate its
utility in speeding up training and inference of flow-based

generative models.

3. Background and motivation
We focus on flow-matching models [23] due to its rising
popularity as an effective training paradigm for generative
models [1, 2, 22]. In this section, we provide a brief overview
of flow-matching through the perspective of stochastic inter-
polants [2, 27], as it pertains to our work.

Preliminaries. Let p(x) be an arbitrary distribution defined
on the reals, and let N (0, I) be a Gaussian noise distribu-
tion. The objective of flow-matching is to learn a transport
between the two distributions. That is, given an arbitrary
ϵ ∼ N (0, I), a flow-matching model gradually transforms
ϵ over time into an x̂ that is part of p(x). Stochastic inter-
polants [2, 27] define this transformation as a time-dependent
stochastic process, where transformation steps are summa-
rized as follows,

x̂t = αtx̂+ σtϵ (1)

where αt and σt are decreasing and increasing time-
dependent functions respectively defined on t ∈ [0, T ], such
that αT = σ0 = 1 and α0 = σT = 0. While theoretically,
αt, σt need not be linear, linear complexity is often sufficient
to obtain strong diffusion models [23, 27, 41].

Flow-matching. Given such a process, flow-matching mod-
els learn to transport between noise to p(x) by estimating a
velocity field over an probability flow ordinary differential
equation (PF ODE), dxt = v(xt, t)dt, whose distribution at
time t is the marginal pt(x). This velocity is given by the
expectations of x̂ and ϵ conditioned on xt,

v(xt, t) = α̇tE[x̂|xt = x] + σ̇tE[ϵ|xt = x], (2)

where α̇t, σ̇t are the time-based derivatives of αt and σt

respectively. Since, x̂ and ϵ are arbitrary samples from their
respective distributions, v(xt, t) is expected “direction” of
all transport paths between noise and p(x) that pass through
xt at t. While the optimal v(xt, t) is intractable, it can be
approximated with a flow-model vθ(xt, t), by minimizing
the training objective:

L(FM)(θ) = E
[
||vθ(xt, t)− (α̇tx̂+ σ̇tϵ)||2

]
(3)

Key to understanding the properties of flow-matching is
the concept of flow uniqueness [23]. That is, flows fol-
lowing the well-defined ODE cannot intersect at any time
t ∈ [0, T ). As such, flow models can iteratively refine
unique-discriminative features relevant to any x ∼ p(x) in
each xt, leading to more efficient and accurate diffusion
paths compared to other training paradigms [23].

Conditional flow-matching. Commonly, p(x) may be a
marginal distribution over several class-conditional distribu-
tions (e.g., the classes of ImageNet [31]). Training models
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in such cases is nearly identical to standard flow-matching,
except that flows are further conditioned on the target distri-
bution class:

L(FM)
cond (θ) = E

[
||vθ(xt, t, y)− (α̇tx̂+ σ̇tϵ)||2

]
, (4)

where x̂ ∼ p(x|y). Resultant models have the desirable
trait of being more controllable: their generated outputs can
be tailored to their respective input conditions. However,
this comes at the notable cost of flow-uniqueness. Specif-
ically these models only generate unique flows compared
to others within the same class-condition, not necessarily
across classes. This inhibits xt’s from storing important
class-specific features and leads to poorer quality genera-
tions. Second, the conditional flow-matching objective trains
models without knowledge of the distributional spread from
other class-conditions, leading to flows that may generate
ambiguous outputs when conditional distributions overlap
. This increases the likelihood of ambiguous generations
that form a mixture between different conditions, restricting
model capabilities. We study these effects in Section 5.

4. Contrastive Flow Matching

We introduce Contrastive Flow-Matching (CFM), a novel
approach designed to address the challenges of learning effi-
cient class-distinct flow representations in conditional gen-
erative models. Standard conditional flow-matching (FM)
models tend to produce flow trajectories that align across
different samples, leading to reduced class separability. CFM
extends the FM objective by incorporating a contrastive reg-
ularization term, which explicitly discourages alignment
between the learned flow trajectories of distinct samples.

Ingredients. Let x̃ ∼ p(x|ỹ) denote a sample drawn from
the data distribution conditioned on an arbitrary class ỹ, and
let ϵ̃ ∼ N (0, I) represent an independent noise sample. To
ensure that the contrastive objective captures distinct flow
trajectories, we impose the conditions x̃ ̸= x̂ and ϵ̃ ̸= ϵ,
where ỹ may or may not be equal to y. Importantly, we
do not assume the existence of a time step t ∈ [0, T ] such
that xt = αtx̃+ σtϵ̃. Consequently, x̃ and ϵ̃ represent truly
independent flow trajectories in comparison to x̂ and ϵ.

The contrastive regularization. Given vθ(xt, t, y) and an
arbitrary x̃, ϵ̃ sample pair, the contrastive objective aims to
maximize the dissimilarity between the estimated flow of
vθ(xt, t, y) from ϵ to x̂, and the independent flow produced
by x̃, ϵ̃. We achieve this by maximizing the quantity,

E
[
||vθ(xt, t, y)− (α̇tx̃+ σ̇tϵ̃)||2

]
. (5)

Since x̃ is drawn from the marginal p(x) rather than p(x|y),
Equation 5 trains flow-matching models to produce flows
that are unconditionally unique.

Putting it all together. We now define contrastive flow-
matching as follows,

L(CFM)(θ) = E

[
||vθ(xt, t, y)− (α̇tx̂+ σ̇tϵ)||2

− λ||vθ(xt, t, y)− (α̇tx̃+ σ̇tϵ̃)||2

]
(6)

where λ ∈ [0, 1) is a fixed hyperparameter that controls
the strength of the contrastive regularization. Thus, CFM
simultaneously encourages flow-matching models to es-
timate effective transports from noise to corresponding
class-conditional distributions (the flow-matching objective),
while enforcing each to be discriminative across classes
(contrastive regularization). Note that CFM can be thought
of as a generalization of flow-matching, as CFM reduces
to FM when λ = 0. We study the effects of varying λ in
Section 5.4.

Implementation. Contrastive flow-matching (CFM) is easily
integrated into any flow-matching training loop, with min-
imal overhead. Algorithm 1 illustrates the implementation
of an arbitrary batch step, where navy text marks additions
to the standard flow-matching objective. Thus, CFM solely
depends on the information already available to the flow-
matching objective at each batch step, without computing
any additional forward steps. Furthermore, CFM seamlessly
folds into flow-matching training regimes, making it a “plug-
and-play” objective for existing setups.

Algorithm 1 Contrastive Flow-Matching Batch Step

1: Input: A model vθ, batch of N flow examples
F = {(x1, y1, ϵ1), . . . , (xN , yN , ϵN )}where (xi, yi) ∼
p(x, y) and ϵi ∼ N (0, I), β learning rate, λ = 0.05.

2: Output: Updated model parameters θ
3: L(θ) = 0
4: for i in range(N ) do
5: t ∼ U(0, 1), xt = αtxi + σtϵi
6: sample (x̃, ỹ, ϵ̃) ∼ F, s.t. (x̃, ỹ, ϵ̃) ̸= (xi, yi, ϵi)
7: v̂ = v(xt, t, yi), v = α̇txi + σ̇tϵ, ṽ = α̇tx̃+ σ̇tϵ̃
8: L(θ)+ = ||v̂ − v||2 − λ||v̂ − ṽ||2
9: end for

10: θ ← θ − β
N∇θL(θ)

Discussion. Figure 3 illustrates the effects of contrastive
flow-matching compared to flow-matching. The figure
shows the resultant flows after training a small diffusion
model in a simple toy-setting. Specifically, we create a
two-dimensional violet gaussian noise distribution and two
independent two-dimensional class distributions (in blue
and orange respectively) such that the latter distributions
have ≈ 50% overlap. Samples from each distribution are
represented as “dots”, with those in the target distributions
colored according to the gaussian kernel-density estimate
between samples from each class in their respective region.
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Figure 3. Contrastive Flow-Matching intrinsically separates
flows between classes. We train a small three layer MLP flow-
matching model to transport between a two dimensional multivari-
ate noise distribution (violet) and two independent blue and orange
class distributions respectively. The class distributions are designed
to have ∼ 50% overlap, and we plot the learned class-conditioned
flows between noise samples and each respective class distribution
using class colors. Top: Flow-matching models learn overlapping
transports between distributions, generating outputs that lie in am-
biguous regions between the two classes. Bottom: Contrastive
flow-matching models have significantly more discriminative flows,
generating class-coherent samples while reducing ambiguity.

We observe that training the model with flow-matching (top)
create flows with large degrees of overlap between classes,
generating samples with lower class-distinction. In contrast,
training the same model with contrastive flow-matching (bot-
tom) yields trajectories that are significantly more diverse
across classes, while also generating samples which capture
distinct features of each respective class.

5. Experiments
We validate contrastive flow-matching (CFM) through exten-
sive experiments across various model, training and bench-
mark configurations. Overall, models trained with CFM
consistently outperform flow-matching (FM) models across
all settings.

Datasets. We use ImageNet-1k [9] processed at both
(256 × 256) and (512 × 512) resolutions, and follow the
data preprocessing procedure of ADM [11]. We then fol-
low [41] and encode each image using the Stable Diffusion
VAE [30] into a tensor z ∈ R32×32×4. We train all models
by strictly following the setup in [41], and use a batch size

of 256 unless otherwise specified. We do not alter the train-
ing conditions to be favorable to CFM, and we always set
λ = 0.05 when applicable.

Measurements. We report five quantitative metrics through-
out our experiments. Specifically, we report Frchet inception
distance (FID) [14], inception score (IS) [33], sFID [28], pre-
cision (Prec.) and recall (Rec.) [20] using 50,000 samples.
We use the SDE Euler-Maruyama sampler with wt = σt for
all experiments, and set the number of function evaluations
(NFE) to 50 unless otherwise specified.

5.1. Contrastive Flow-Matching Improves SiT

Implementation details. We train on the state-of-the-art
SiT [27] model architecture, using both SiT-B/2 and SiT-
XL/2.

Metrics

Model FID ↓ IS ↑ sFID ↓ Prec. ↑ Rec. ↑

SiT-B/2 42.28 38.04 11.35 0.5 0.62
+ Using CFM 33.39 43.44 5.67 0.53 0.63

SiT-XL/2 20.01 74.15 8.45 0.63 0.63
+ Using CFM 16.32 78.07 5.08 0.66 0.63

(a) ImageNet-1k (256x256) Results. CFM significantly outperforms flow-
matching models across nearly all metrics, and matches Recall on SiT-XL/2.

Metrics

Model FID↓ IS↑ sFID↓ Prec.↑ Rec.↑

SiT-B/2 50.26 33.58 14.88 0.57 0.61
+ Using CFM 41.59 38.20 6.13 0.62 0.63

SiT-XL/2 22.98 70.14 10.71 0.73 0.60
+ Using CFM 19.67 72.58 4.98 0.76 0.60

(b) ImageNet-1k (512x512) Results. Models trained with CFM either
substantially outperform or match their flow-matching counterparts in all
metrics.

Table 1. SiT [27] results on ImageNet-1k (256 × 256; a) and
(512× 512; b). We train all models for 400K iterations following
[41]. All metrics are measured with the SDE Euler-Maruyama
sampler with NFE=50 and without classifier guidance. We use
λ = 0.05 for all models trained with CFM and do not change any
other hyperparameters. ↑ indicates that higher values are better,
with ↓ denoting the opposite.

Table 1 summarizes our results. Overall, CFM dramat-
ically improves over flow-matching in nearly all metrics
(only matching the flow-matching SiT-XL/2 model in re-
call). Notably, employing CFM with SiT-B/2 lowers FID by
over 8 compared to flow-matching at both ImageNet reso-
lutions, highlighting the strength of CFM in smaller model
scales. Similarly, CFM is robust to larger model scales and
outperforms FM by over 3.2 FID when using SiT-XL/2.
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5.2. REPA is complementary

REPresentation Alignment (REPA) [41] is a recently intro-
duced training framework that rapidly improves diffusion
model performance by strengthening its intermediate rep-
resentations. Specifically, REPA distills the encodings of
foundation vision encoders (e.g., DiNOv2 [4]) into the hid-
den states of diffusion models through the use of an auxilliary
objective. Notably, REPA can improve the training speed of
vanilla SiT models by over 17.5×, while further improving
their performances [41]. CFM is easily integrated into REPA
and only requires replacing the flow-matching objective.

Implementation details. We apply REPA on the same SiT
models as in Section 5.1, and use the distillation process de-
fined by [41] exactly. Specifically, we use distill DiNOv2 [4]
ViT-B [12] features into the 4th layer of the SiT-B/2, and the
8th layer of the SiT-XL/2, and mirror their hyperparameter
setup.

Metrics

Model FID ↓ IS ↑ sFID ↓ Prec. ↑ Rec. ↑

REPA SiT-B/2 27.33 61.60 11.70 0.57 0.64
+ Using CFM 20.52 69.71 5.47 0.61 0.63

REPA SiT-XL/2 11.14 115.83 8.25 0.67 0.65
+ Using CFM 7.29 129.89 4.93 0.71 0.64

(a) ImageNet-1k (256x256) Results with REPA. Adding CFM to REPA
further improves SiT models across nearly all metrics, and by as much as
6.81 FID.

Metrics

Model FID↓ IS↑ sFID↓ Prec.↑ Rec.↑

REPA SiT-B/2 31.90 56.96 13.78 0.67 0.62
+ Using CFM 24.48 64.74 5.89 0.71 0.61

REPA SiT-XL/2 11.32 119.72 10.21 0.76 0.63
+ Using CFM 7.64 131.50 4.72 0.79 0.62

(b) ImageNet-1k (512x512) Results with REPA. CFM is robust with
REPA at large image resolutions, further improving performance across
established metrics.

Table 2. REPA SiT [27] results on ImageNet-1k (256×256; a) and
(512× 512; b). All models are trained for 400K iterations strictly
following the procedure in [41], and set λ = 0.05. We use the SDE
Euler-Maruyama sampler with NFE=50 without classifier guidance
for all our metrics.

We report results in Table 2. Similar to Section 5.1, CFM
substantially improves REPA models by as much as 6.81
FID, and consistently improves flow-matching with model
scale. This highlights the versatility of the contrastive flow-
matching objective as a broadly applicable criterion for dif-
fusion model.

Metric
CFG Scale

No CFG 1.75 1.80 1.85

IS↑ 131.50 255.68 262.23 268.39

FID↓ 7.64 2.18 2.17 2.19

Table 3. ImageNet 256x256 Results with CFG. Integrating Con-
trastive Flows (CF) with Classifier-Free Guidance (CFG) enhances
FID, IS, and sFID scores during inference, demonstrating the po-
tential for further performance improvements in our model with the
use of CFG.

Metric
CFM λ Values

0.0 0.001 0.01 0.05 0.1 0.15

IS↑ 115.83 115.70 119.41 129.89 116.27 82.20

FID↓ 11.14 10.93 9.93 7.29 9.86 19.21

Table 4. λ = 0.05 is ideal. We show an ablation of the CFM weight
parameter λ. A too large λ produces degenerate distributions that
do not model class structure well. Too low λ is essentially identical
to flow-matching, with very little effect on training. λ = 0.05 is
best and we use this for all our experiments.

5.3. CFG Stacks with Contrastive Flow-Matching
Contrastive flow-matching offers advantages of Classifier-
Free Guidance (CFG), without incurring additional computa-
tional costs during inference. In this section, we demonstrate
that when computational resources permit, combining CFM
with CFG can yield further performance enhancements. We
use our CFM REPA SiT-XL/2 model trained on the training
set of ImageNet-1k (256 × 256), and evaluate its perfor-
mance as in Section 5.2. Our evaluation sets NFE=50, with
σhigh = 0.65, and the results are presented in Table 3. We
find that integrating CFM with CFG enhances FID, IS, and
sFID scores during inference. This suggests that CFM retains
the capability to leverage CFG for improved performance
when computational costs are not a constraint, thereby fur-
ther boosting the model’s efficacy.

5.4. Analyzing Contrastive Flow-Matching

Understanding the CFM weight (λ). λ directly controls
how unique flows are across classes. Increasing λ encour-
ages every diffusion step to be fully discriminative, enabling
models to encode distinct representations that integral to gen-
erating strong visual outputs at each trajectory step. How-
ever, setting it too high can lead to overly-separated flow
trajectories, making it difficult to capture the class structure
(Table 5.4). However, λ values that are too low mirror the
flow-matching objective. Notably, we find that λ = 0.05
is stable across all model and dataset settings, consistently
achieving strong performance.
Earlier class differentiation during denoising. In Figure 4,
we study flow trajectories of standard flow-matching (FM)
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Figure 4. Contrastive flow-matching (CFM) denoises significantly more efficiently than flow-matching. We visualize the expected final
image estimated by a flow-model when denoised every 5 steps for trajectories of length 30 steps using the SDE Euler-Maruyama sampler
and do not use classifier guidance. We compare the trajectories of a REPA SiT-XL/2 [41] trained on ImageNet-256 [9] for 400K steps with
flow-matching (FM), and the same model trained with the contrastive flow-matching (CFM) objective. We show these trajectories in sets of
pairs generated from the same noise sample during inference, with the flow-matching model above our CFM version.
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and flow-matching with CFM. To do this, we take partially
denoised latents at various intermediate time steps along a
trajectory with total length 30. While initially both follow
similar trajectories, they quickly diverge within the first sev-
eral steps of the denoising process. For instance, the model
trained with CFM produces more structurally coherent im-
ages earlier (around 15 to 20 steps in) than with FM. The
iconic features of each class, such as slanted bridge surfaces
(Figure 4 (top-left)), animal eyes (Figure 4 (upper-left and
top-right), and train windows (Figure 4 (upper-right)), are
more clearly visible early on during the diffusion process of
the CFM model. This enables CFM to ultimately generate
higher quality images at the final timestep.

Effects of batch size on CFM. In Table 5.4, we study the ef-
fects of batch size on our loss. It is well known that batch size
has an important effect on contrastive style losses [4, 6, 13]
that draw negatives within the batch. This can be under-
stood as a sample diversity issue. If the batch size is larger
than negative samples within the batch are more representa-
tive of the true distribution. In this table, we see a similar
trend: larger batch sizes are important for maximizing the
performance of CFM across several model scales. We also
maintain our improvements over the REPA baseline through
all batch sizes and model scales.

Improved training and inference speed. In Figure 5 (left),
we see the significant improvements in training speed from
the CFM objective. We reach the same performance (mea-
sured by FID-50k) as baseline after half the number of train-
ing iterations. In Figure 5 (right), we also demonstrate sig-
nificant improvements at inference time. With our objective,
we reach superior performance with only 50 denoising steps
compared to the baseline with 250 denoising steps. This is a
linear 5× improvement in training efficiency. Taken together,
these results emphasize the important gains in computational
efficiency achieved by our method.

6. Conclusion

We introduced Conditional Flow Matching (CFM), a simple
addition to the diffusion objective that enforces distinct,
diverse flows during image generation. Quantitatively, CFM
results in improved image quality with far fewer denoising
steps (5× faster) and significantly improved training speed
(2× faster). Qualitatively, CFM improves the structural
coherence and global semantics for image generation.
All of this is achieved with negligible extra compute per
training iteration. Finally, we show that our improvements
stack with the recently proposed Representation Alignment
(REPA) loss, allowing for strong gains in image generation
performance. Looking forward, CFM shows the possibility
that deviating from perfect distribution modeling in the
diffusion objective might result in better image generation.

Metrics

Model Batch Size FID ↓ IS ↑ sFID ↓

REPA SiT-B/2 256 42.28 38.04 11.35
+ Using CFM 256 33.39 43.44 5.67

REPA SiT-B/2 512 24.45 69.15 11.42
+ Using CFM 512 17.06 81.41 5.29

REPA SiT-B/2 1024 22.00 76.15 11.76
+ Using CFM 1024 15.23 88.53 5.20

REPA SiT-XL/2 256 11.14 115.83 8.25
+ Using CFM 256 7.29 129.89 4.93

REPA SiT-XL/2 512 10.15 129.43 9.00
+ Using CFM 512 6.36 146.17 5.42

Table 5. CFM Scales with Batch Size. We train all models for
400K iterations and strictly follow the protocol of [41]. All metrics
are measured with the SDE Euler-Maruyama sampler with NFE=50
and without classifier guidance. We use λ = 0.05 for all models
trained with CFM and do not change any other hyperparameters. ↑
indicates that higher values are better, with ↓ denoting the opposite.
Improvement using CFM evenly scales with batch-size, and even
outperforms flow-matching models with half the batch-size.

FI
D-

50
K

100

10

0 50 200 250
Total Denoising Steps

Flow-Matching
Contrastive Flow-Matching

;
100 150

FI
D-

50
K

Training Iteration
50K 100K 1M 2M

9x Faster

200K

50

10

Flow-Matching
Contrastive Flow-Matching

Figure 5. CFM requires significantly fewer training iterations
and inference-time denoising steps. We plot FID-50k on Ima-
geNet 256x256 with different numbers of training iterations and
denoising steps. We see that CFM outperforms the baseline with
9× fewer training iterations and 5× reduction in the number of
inference-time denoising steps, indicating that CFM is more effi-
cient in both training and inference.
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