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Abstract

Relation Extraction (RE) is the task of predicting a relation between a subject and
object in a sentence, while knowledge graph link prediction (KGLP) infers a set
of objects — O, given a subject and a relation from a knowledge graph. These
two problems are closely intertwined: given a sentence consisting of a subject
and object — o, a RE model estimates a relation that a KGLP model (together
with the subject) may use to infer a set of objects — O — that contains o. In this
paper, we leverage this insight by proposing a multi-task learning framework that
enhances RE models by jointly training on both RE and KGLP tasks. We illustrate
the generality of our approach by applying it on three existing RE methods and
achieve consistent improvements across our benchmark datasets.

1 Introduction

Many real-world applications ranging from search engines to conversational agents rely on the ability
to uncover new relationships from existing knowledge. Relation extraction (RE) and knowledge
graph (KG) link prediction (KGLP) are two closely related tasks that center around inferring new
information from existing facts. RE is the task of uncovering the relationship between two entities
(termed the subject and object respectively) in a sentence. Similarly, KGLP involves inferring the set
of correct answers (i.e., objects) to KG questions consisting of an entity (subject) and relation. These
questions are given in triple-form: (SUBJECT, RELATION, ?). To illustrate their relationship, consider
the sentence “John and Jane are married”, whose subject and object are highlighted in blue and
red respectively. Given this information, RE models infer the relationship between “John” and “Jane”
(e.g., “SPOUSE”). Similarly, KGLP models infer the answers (objects) to the question (John, SPOUSE,
?). Based on the sentence, the answers must include “Jane”. Thus, RE models predict the relation
between a subject and object, while KGLP models infer the object from the subject and relation.

Several methods have been proposed to boost the performance of RE models by incorporating
information from KGLP. However, these approaches typically require KGLP pre-training [32, 29],
exhibit constrained parameter sharing [32, 29], or predominately attend over both problems through
custom attention mechanisms [3, 11, 35]. Moreover, these frameworks only support a limited class of
KGLP models that can be reframed as inferring relations from subject and objects. This constraint
excludes recent KGLP methods which perform significantly better, but cannot be reformulated to
satisfy the restriction. An ideal framework should support arbitrary RE and KGLP methods, including
the significantly more expressive and stronger performing recent KGLP approaches. Additionally,
such a framework should enable RE models to benefit from KGLP models with minimal changes to
the underlying RE and KGLP methods.

We propose a general framework which ties the RE and KGLP tasks cohesively into a single learning
problem. Our architecture, termed JRRELP—Jointly Reasoning over Relation Extraction with
Link Prediction—has the following desirable properties: (i) General: our method can be applied
to arbitrary RE and KGLP models to boost RE performance, (ii) Cyclical: we enhance cross-task
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Figure 1: Overview of JRRELP. JRRELP is comprised of three tasks as described in Section 3: RE,
KGLP and Coupling. The RE task is illustrated in the top-left quadrant, the KGLP task is described
by the top-right quadrant, and the bottom half shows the Coupling task.

information sharing by cyclically coupling model parameters, (iii) Scalable: JRRELP introduces
minimal overhead over baseline RE methods (only 6% slower batch updates). An overview of
JRRELP is shown in Figure 1, and is explained in detail in Section 3.

2 Background

Let D represent a dataset composed of sentences X = [x1, x2, . . . xn], where xj represents a
one-hot encoding for the jth sentence token (i.e., word). Each sentence contains a subject s =
[xsstart , . . . , xsend ], that is defined as a contiguous span (sstart, send) over the sentence, and an object
o = [oostart , . . . , ooend ], that is similarly defined. Subjects and objects are defined by their types, termed
stype and otype, respectively. Following our motivating example from Section 1, John and Jane would
be tagged as having types PERSON. Several methods [36, 37, 9, 15] employ type-substitution during
data preprocessing: substituting subjects and objects in sentences with their corresponding types.
For instance, with type-substitution our example sentence becomes “SUB:PERSON and OBJ:PERSON
are married.” Without loss of generality, we assume that sentences are preprocessed using type-
substitution for the remainder of this paper. Finally, each sentence contains a relation, r, between its
subject and object (e.g. SPOUSE).

Relation Extraction (RE). Given X , s and o, RE infers r between s and o. Many successful
RE methods—including the current state-of-the-art [24]—involve learning vector embeddings for
each component. Specifically, let Nv and Nr denote the vocabulary size for the sentence tokens
and the number of unique relations respectively computed over a training dataset. Note that under
our type-substitution assumption, Nv also contains all entity types. We define V ∈ RDv×Nv and
R ∈ RDr×Nr as learnable vocabulary and relation embedding matrices respectively, where Dv and
Dr denote the vocabulary and relation embedding sizes respectively. Given a sentence, a subject, an
object, and a relation, their respective embedding representations are defined as: X = V X ∈ RDv×n,
s = V s ∈ RDv×(send−sstart+1), o = V o ∈ RDv×(oend−ostart+1), and r = Rr ∈ RDr , where n is the
number of tokens in X . Given these embeddings, most successful RE models [36, 37, 9, 1, 24] can
be formulated as instances of the following model,

r̂ = fRE(X, s,o, . . .), and pRE(r | r̂) = Softmax(Rr̂ + b), (1)
where r̂ is the inferred relation representation from a prediction model fRE and “. . .” accounts for any
additional auxiliary information (attributes) that may be used (e.g. Part-of-Speech).

Knowledge Graph Link Prediction (KGLP). Given a question in the form of a subject-relation-
object triple—(s, r, ?), KGLP involves inferring the correct set of objects O. s and o are nodes in
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a KG, while r represents a graph edge between them. Although D does not explicitly specify a
KG, one can be generated by extracting triples made up of sentence subjects, objects and relations.
Specifically, given a sentence with s, o, and r, we can use the subject and object types—stype and otype,
respectively—to form a KG whose edges are represented by r and nodes by stype and otype. For ease
of notation, we assume that each term is a one-hot encoding of the corresponding identifier. Given
this notation, we obtain KG component embeddings by: stype = V stype ∈ RDv , otype = V otype, and
r = Rr ∈ RDr . Multiple existing KGLP methods can be defined in terms of the following model:

z = gKGLP(s
type, r), and pKGLP(O | otype, z) = σ(Votypez + b) (2)

where z is a merged representation of stype, gKGLP is a KGLP model, and σ is the sigmoid activation
function. While certain early KGLP methods [4, 33, 18, 14, 28] do not fit under this formulation, they
may be accommodated by a simple reformulation of Equation 2 to their respective scoring terms.

3 Proposed Method

RE and KGLP tasks are tightly coupled. Given a sentence X with s and o, RE models predict the
relationship—r—between s and o. Similarly, KGLP methods infer a set of objects O , where o ∈ O
(this is known because X describes this relationship) from s and r. JRRELP is a multi-task learning
framework that explicitly accounts for the connection between RE and KGLP. JRRELP jointly trains
a RE model, pRE, and a KGLP model, pKGLP, that are defined using our abstract formulation from
Section 2 and optimized using one objective function. Below we describe each term of this function.

RE Loss. The first term corresponds to the standard loss function used to train RE models, LRE =∑N
i=1 SCE(ri, pRE(ri | Xi, si, oi, . . .)), where i denotes the ith example in D, “SCE” represents the

softmax cross-entropy loss function, and pRE is defined as in Equation 1. Although this loss term
assumes that a single relation exists between a subject and an object in a sentence, it is consistent
with the loss term utilized by our baselines and is also appropriate for our widely used benchmark
datasets described in Section 4. Additionally, we emphasize that this does not restrict the applicability
of JRRELP to single-relation extraction problems. For instance, “SCE” can be substituted for
binary-cross entropy (BCE) in the case of multi-label RE problems.

KGLP Loss. The second term corresponds to a popular loss function which is often used to
train KGLP models. This loss function is defined as follows: LKGLP =

∑N
i=1 BCE(Oi, pKGLP(Oi |

stype
i , otype

i , ri)), where pKGLP is defined as in Equation 2. Note here that Oi is a set of objects that
can be constructed automatically given all of the training data and conditioned on stype

i and ri, as
described in Section 2. We also acknowledge that early KGLP methods [4, 33, 18, 14, 28] cannot be
represented by this loss term. However, we emphasize that this does not detract from the generality of
JRRELP because they can be integrated by changing this term to their respective objective functions.

Coupling Loss. The third term penalizes inconsistencies between the predictions of the RE
and KGLP models, and is defined as follows: LCOUPLING =

∑N
i=1 BCE(Oi, pCOUPLING(Oi |

Xi, si, oi, s
type
i , otype

i , . . .)), where pCOUPLING(Oi | . . .) = σ(Votype
i
gKGLP(s

type
i , fRE(Xi, si,oi, . . .))).

The key difference between LCOUPLING and LKGLP is that the relations embeddings, ri, computed by ri
in LKGLP, are replaced by the predicted relation embeddings r̂i from fRE.

JRRELP Objective Function The JRRELP objective function is defined as follows:

LJRRELP = LRE + λKGLPLKGLP + λCOUPLINGLCOUPLING, (3)

where λKGLP ≥ 0 and λCOUPLING ≥ 0 are model hyperparameters that may be tuned. Furthermore, we
observed no negative impact in performance.

Most importantly, our framework introduces a cyclical relationship between the RE and KGLP models
that couples them together very tightly. Specifically, the RE model predicts relation embeddings
using V that it compares to R to produce distributions over relations. The KGLP model on the other
hand predicts object embeddings using R that it compares to V to produce distributions over objects.
It is mainly this cyclical relationship along with the coupling loss term that result in both the RE and
KGLP models benefiting from each other and serves to enhance the performance and robustness of
RE methods. An overview of JRRELP is shown in Figure 1.

Note that, even though JRRELP minimizes the joint three-task objective function shown in Equation 3,
at test time we only use the RE model to predict relations between subjects and objects. Thus, JRRELP
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Table 1: Results reported by our own experiments are marked by ∗. The remainder are taken from
[1] and [23]. All numbers are expressed as percentages. † denotes experiments performed using
additional data other than provided by the respective models. “–” denotes missing results from the
respective publications. “SemEval-MM” denotes the Masked-Mention version of the SemEval dataset.

Dataset Metric Models

C-AGGCN TRE BERTEM PA-LSTM PA-LSTM C-GCN C-GCN SpanBERT SpanBERT

TACRED
Precision 73.1 70.1 – 65.7 67.8∗ 69.9 74.1∗ 69.2* 74.0*
Recall 64.2 65.0 – 64.5 65.0∗ 63.3 61.9∗ 71.2* 67.3*
F1 68.2 67.4 71.5† 65.1 66.4∗ 66.4 67.4∗ 70.2* 70.8*

SemEval-MM
Precision – – – 75.2 74.8 76.5 76.9 81.2 82.7
Recall – – – 78.0 80.6 79.5 80.3 86.1 85.2
F1 – – – 76.6 77.6 78.0 78.5 83.6 83.9

can be thought of as a framework which alters the learning trajectory of an RE model, rather than
increase its capacity through using additional model parameters.

4 Experiments

Datasets. We empirically evaluate the performance of JRRELP over three existing relation extraction
baselines on two widely used supervised benchmark datasets: TACRED [36] and SemEval 2010 Task
8 [12]. Consistent with prior literature [36, 37, 9], we report our metrics from the model with the
median validation f1-score over five independent runs. Additionally, similar to [36, 37, 9, 24, 15, 1],
we report our micro-averaged f1-scores on TACRED, and the macro-averaged scores on SemEval.
Note that we evaluate using the masked-mention version of SemEval, which enforces type-substituted
sentences. [37] showed this to be better suited to testing model generalizability. Our primary objective
is to measure the importance of a joint RE and KGLP objective in environments where learning over
both tasks is restricted only to data available in a relation extraction dataset. This helps us estimate
how effective JRRELP may be in real-world applications where a pre-existing KG is not available.

Models. We illustrate the generality of JRRELP by evaluating it on baselines from both classes of
RE approaches:1 Two sequence-based models (PA-LSTM and SpanBERT), and a graph-based model
(C-GCN). We join all three baselines with the KGLP method ConvE [6]. We distinguish between our
baselines and their JRRELP variants by boxing their model names (e.g. PA-LSTM ). Further details
regarding integrating each model with JRRELP and hyperparameters can be found in Appendix A.

Results. We report our overall performance results on TACRED in Table 1. We observe that JRRELP
consistently outperforms it’s baseline variants over their F1 and precision metrics. In particular,
we find that JRRELP improves all baseline model performances by at least .6% F1, and yields
improvements of up to 4.1% in precision. Moreover, to the best of our knowledge C-CGCN-JRRELP
achieves a new state-of-the-art in precision. Furthermore, JRRELP bridges the performance gap
between several methods, without altering their model capacities. Notably, PA-LSTM matches
the reported C-GCN performance, whose JRRELP variant matches TRE [1] — a significantly more
expressive transformer-based approach. These results suggest that the true performance ceiling
of reported relation extraction approaches may be significantly higher than their reported results,
and that JRRELP serves as a conduit towards achieving these performances. Results on SemEval
masked-mention indicate a similar pattern to TACRED: JRRELP improves performance across all
baselines. This illustrates the effectiveness of JRRELP’s framework in environments with little data.

5 Conclusion

We propose JRRELP, a novel framework that improves upon existing relation extraction approaches
by leveraging insights from the complementary problem of knowledge graph link prediction. JRRELP
bridges these two tasks through an abstract multi-task learning framework that jointly learns RE and
KGLP problems by unconstrained parameter sharing. We exhibit this generality be extending three
diverse relation extraction methods, and improve their performance. Specifically, JRRELP enhanced
methods match or exceed more complex RE models, and achieve new state-of-the-art performance.

1Refer to Appendix C for their definitions.
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Broader Impact

Relation extraction is pivotal to advancement of a diversity of applications ranging from improving
artificial assistants and search engines, to medical functions such as automated drug and abnormal
gene discovery. We propose an abstract framework that improves upon the performance of existing
relation extraction (RE) methods by explicitly leveraging the similarities of relation extraction and
knowledge graph (KG) link prediction, while only using the data provided in a RE dataset. Our
modular approach is capable of enhancing many RE methods and requires minimal implementation
changes, making it ideal for fast deployment across any of these applications to improve them.
Moreover, by not being dependent on additional KG datasets, our framework becomes extremely
flexible to many types of environments including unstructured text, which is very important in the
medical domain. However, since our method can be applied to improve relation extraction from
personal and sensitive data (e.g., determining a person’s political affiliation), one needs to employ
caution to ensure the privacy and protection of this data. This could also be avoided via proper
government intervention and regulation of certain technologies and their uses.
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Appendices
A Models Continued

A.1 Relation Extraction

PA-LSTM. This model was proposed by [36], and centers around formulating fRE as the combination
of a one-directional long short-term memory (LSTM) network, and a custom position-aware attention
mechanism. In addition to the sentence, PALSTM also incorporates Part-of-Speech (POS) and
Named-Entity-Reference (NER) tags, as well as tags representing the positional offset of each token
from the subject and the object respectively. The method first applies the LSTM over the concatenated
sentence, POS tag, and NER tag embeddings. A relation r̂ is then predicted by attending the LSTM
outputs with a custom position-aware attention mechanism using the position offset tag embeddings.

C-GCN. This model was proposed by [37], and formulates fRE as a graph-convolution network
(GCN) over sentence dependency parse trees. It uses the same sentence attributes as PA-LSTM,
and additionally the sentence dependency parse. Similar to PA-LSTM, the method first encodes
a concatenation of the sentence, POS tag, and NER tag embeddings using a bi-directional LSTM
network. The model then infers relations from these encodings by reasoning over the graph implied
by a pruned version of the provided dependency tree parse. In particular, C-GCN computes the
least common ancestor (LCA) between s and o, and uses positional offset tags to prune the tree
around the LCA. Afterwards, C-GCN processes the sentence encodings using a graph convolution
network (GCN) defined over the pruned dependency parse tree. The resulting representations are
finally processed by a multi-layer perceptron to predict relations.

SpanBERT. This model was proposed by [15], and is one of the current state-of-the-art (SoTA)
relation extraction methods. SpanBERT extends BERT [7] by pre-training at the span-level. Moreover,
the model randomly masks contiguous text spans instead of individual tokens, and adds a span-
boundary objective that infers masked spans from surrounding data. In contrast to PALSTM and
C-GCN, SpanBERT only takes into account the sentence in its input to predict relations. Thus, fRE is
formulated as its complete architecture, without additional attributes. We chose this model because
it is one of the current state-of-the-art RE models and it is also open-sourced, allowing to easily
integrate it in our experimental evaluation pipeline.

Note that PA-LSTM, C-GCN, and SpanBERT are just three of many approaches supported by our
abstract RE model formulation. For instance, other transformer-based methods [1, 24, 23] can also
be represented by using a different definition for fRE.

Hyperparameters. All model hyperparameters and training procedure can be found in our repository
at https://github.com/gstoica27/JRRELP.git.

A.2 Knowledge Graph Link Prediction

ConvE. ConvE [6] is defined by using the following merge function in our abstract model formulation:

gKGLP(s
type, r) = Conv2D(Reshape([stype; r]) (4)

where “Conv2D” is a 2D convolution operation and “Reshape([stype; r])” first concatenates stype and
r and then reshapes the resulting vector to be a square matrix, so that a convolution operation can be
applied to it.

While we acknowledge that ConvE is not the current state-of-the-art (SoTA) KGLP approach, it
performs very well while using only a fraction of the parameters current SoTA [25, 31] methods
require, thus making it more efficient. Moreover, ConvE is an example of a KGLP method which
cannot be restructured to infer r from s and o, making it infeasible to use with any of the previous
joint RE and KGLP frameworks [29, 32]. Note that, our results can only be further enhanced by
using a stronger KGLP approach and thus this choice should not affect our conclusions.
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Table 2: TACRED and SemEval-MM F1 results from our ablation study. † denotes experiments
conducted without LCOUPLING, and ‡ marks those run without LKGLP.

Dataset Metric Ablation Experiments

PALSTM PA-LSTM PALSTM † PALSTM ‡ C-GCN C-GCN C-GCN † C-CGCN ‡

TACRED F1 65.1 66.4 65.6 66.3 66.4 67.4 66.8 67.0
SemEval-MM F1 76.6 77.6 76.8 77.3 78.0 78.5 78.1 78.4

B Experiments Continued

B.1 Ablation Experiments.

To examine the effects of JRRELP’s LKGLP and LCOUPLING over the traditional relation extraction
objective, LRE, we perform an ablation study with each term removed on methods from both RE
approach classes: sequence-based (PALSTM) and graph-based (C-GCN). Table 2 shows the F1
results. Metrics for each dataset are reported in the same manner as previous results. All ablation
performances illustrate the importance of LKGLP and LCOUPLING as part of JRRELP’s framework, as
their respective models are worse than the full JRRELP architecture; they exhibit performance drops
up to .8% F1 respectively. Moreover, we observe the largest performance drop from the removal of
LCOUPLING – which removes JRRELP’s consistency constraint between RE and KGLP models. This
highlights importance of establishing this relationship while training to achieve strong performance.

C Related Work

There are three areas of research that are related to the method we propose in this paper. In this
section, we discuss related work in each area and position JRRELP appropriately.

Relation Extraction. Existing RE approaches can be classified in two categories: sequence-based,
and graph-based methods. Given a sentence in the form of a sequence of tokens, sequence-based
models infer relations by applying recurrent neural networks [38, 36], convolutional neural networks
[34, 21, 30], or transformers [1, 24, 15, 23]. In addition to the sentence, graph-based methods use the
structural characteristics of the sentence dependency tree to achieve strong performance. [22] apply
an n-ary Tree-LSTM [26] over a split dependency tree, while [37, 9] employ a graph-convolution
network (GCN) over the dependency tree.

Knowledge Graph Link Prediction. Existing KGLP approaches broadly fall under two model
classes: single-hop and multi-hop. Given a subject and a relation, single-hop models infer a set
of objects by mapping the subject and relation respectively to unique learnable finite dimensional
vectors (embeddings) and jointly transforming them to produce an object set. These approaches
can be translational [4] over the embeddings, multiplicative [33, 28], or a combination of the two
[6, 18, 14, 2, 25, 31]. On the other hand, multi-hop approaches determine object sets by finding
paths in the KG connecting subjects to the objects, and primarily consist of path-ranking methods
[16, 8, 20, 10, 27, 5, 17].

Joint Frameworks. Several approaches [32, 11, 29, 35, 3] have explored using the additional
supervision provided by a KG to benefit relation extraction model performance. Of these, we believe
[32, 11, 29] are most similar to our work. [32] proposes a framework which utilizes a KGLP model,
TransE [4], as an additional re-ranking term when evaluating an RE model. While employing TransE
as a re-ranker improves performance, their framework trains TransE and the respective RE approach
separately without parameter sharing. This only allows very restricted information sharing during
evaluation. [11] proposes a dual-attention framework for jointly learning KGLP and RE tasks by
computing a weight distribution over training data and shares parameters between tasks. However,
like [32], [11] limits KGLP model selection to those which can reformulated as inferring relations
from subjects and objects. This excludes a large number of recent methods [6, 2, 5, 17, 25, 31]
which cannot be reframed in this way. [29] also presents a joint framework, LFDS, for training
relation extraction approaches via KGLP objectives. In particular, the architecture introduces a
similar objective to LCOUPLING, but can only support the same class of KGLP methods as in [32, 11].
Moreover, LFDS requires KGLP pre-training, and does not share core parameters such as relation
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representations between RE and KGLP methods. This can create domain-shift between the two
respective models and impact performance.

JRRELP improves upon previous literature by providing a single joint objective which simultaneously
addresses all their aforementioned limitations. First, JRRELP proposes an abstract framework
which supports many RE and KGLP methods through three standard-based loss terms. Second,
JRRELP shares all its parameters between KGLP and RE tasks, and establishes a novel cyclical
learning structure over core parameters. Third, RE and KGLP tasks are jointly trained without any
problem-specific pretraining required, enabling tasks to benefit from each other simultaneously during
training. Fourth, JRRELP’s structure facilitates suport for RE and KGLP methods with minimal
implementation changes: only requiring their respective substitutions into f and g.
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