
ZipIt!: Multitask Model Merging without Training

George Stoica∗ Daniel Bolya* Jakob Bjorner
Pratik Ramesh Taylor Hearn Judy Hoffman

Georgia Tech
{gstoica3,dbolya,jakob bjorner,pramesh3,thearn6,judy}@gatech.edu

Abstract

We tackle the extremely difficult problem of combining distinct models with
different initializations, each solving a separate task, into one multi-task model
without any additional training. Prior work in model merging permutes one
model to the space of the other then averages them together. While this works for
models trained on the same task, we find that this fails to account for the differences
in models trained on disjoint tasks. Thus, we introduce “ZipIt!”, a general method
for merging two arbitrary models of the same architecture that incorporates two
simple strategies. First, in order to account for features that aren’t shared between
models, we expand the model merging problem to allow for merging features
within each model by defining a general “zip” operation. Second, we add support
for partially zipping the models up until a specified layer, naturally creating a multi-
head model. We find that these two changes combined account for a staggering
20-50% improvement over prior work,

1 Introduction

Combining multiple models into one without training has recently started to gain traction in the
vision community. Model Soups [1] can add multiple models finetuned from the same pretrained
initialization to improve accuracy and robustness. Git Re-Basin [2] generalizes further to models
trained on the same data but with different initializations, though with a significant accuracy drop.
REPAIR [3] improves on Git Re-Basin by adding new parameters and adjusting model batch norms
where applicable. However, all of these methods only combine models trained on the same task.
In this paper, we take this line of work to a logical extreme: merging differently initialized models
trained on completely separate tasks (see Fig. 1ab). We show that this is an incredibly difficult
problem for prior work and employ two simple strategies to make it feasible.

First, prior work focuses on permuting one model to the other when merging them. This inherently
assumes that most features across them are correlated. But, this is not always the case for models
trained on different tasks. Instead, we generalize model merging to support “zipping” any combination
of correlated features within and across each model. We find that on some tasks, this alone improves
accuracy by up to 20% vs. permutation-based approaches

Second, the features of models trained on disjoint tasks become less correlated over the course of the
network [4]. Thus, we introduce partial zipping, which allows us to only “zip” up to a specified layer.
Afterward, we feed the merged model’s outputs to the remaining unmerged layers of the original
networks, creating a multi-head model. Partially zipping can improve accuracy by over 15%.

ZipIt! (Fig. 1c) incorporates both strategies to “zip” models trained on different tasks into a single
multitask model without retraining. ZipIt! is general and supports merging arbitrary models of the
same architecture together (Sec. 3). We validate ZipIt! by merging models trained on different tasks
(including classification and segmentation) into one, significantly outperforming prior work (Sec. 4).

∗Equal Contribution. Code: https://github.com/gstoica27/ZipIt.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/gstoica27/ZipIt


Figure 1: Setting and ZipIt! (a) Prior work merges models from the same dataset with the same
label sets: e.g., merging two models both trained to classify dog breeds. (b) Our setting expands to
merging models from different datasets with different label sets: e.g., merging a model that classifies
dog breeds with one that classifies bird species. (c) ZipIt! merges these models without retraining by
identifying shared features. Depending on the task, ZipIt! can nearly match ensemble performance.

2 Related Work

Model merging combines the weights of two or more models into a one. Our work differs from prior
work in that we merge differently initialized models trained on disjoint tasks (Fig. 1) without training.

Merging Finetuned Models. If two models are finetuned from the same pretrained checkpoint,
they often lie in the same error minima [5]. [6, 7, 8, 9, 10, 11] have exploited this property to
average together the weights of a model at different stages of training. [12, 13, 14, 15, 16] use an
“exponential moving average” of training checkpoints as a teacher for additional self-supervised
learning. Other works, [1, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27] merge models fully finetuned to
improve performance on a task. Our setting differs, as we do not assume the same initialization.

Merging Differently Initialized Models. Works in this space often merge models trained on the
same task and rely on mode connectivity [28, 29, 30, 31, 32, 33, 34], as differently initialized models
may not lie in the same error minima [29, 35]. Most recent work follows the intuition formalized
by [35] that models permuted to the same loss minima can be merged by averaging their weights
[35, 2, 3, 36]. Similar to ZipIt! [37] merges models of different tasks, but requires jointly finetuning
on all tasks after each layer merge. As far as we are aware, we present the first general method to
successfully merge models trained on disjoint tasks without additional training.

3 ZipIt!

In this work, we treat model merging as combining the checkpoints (i.e., collection of weights) of
multiple models layer-by-layer into a single checkpoint that can perform all the tasks of its constituents.
Consider a model L as a collection of layers Li ∈ L, each of which may have some parameters (e.g.,
Wi, bi for a linear layer). Suppose Li ∈ L is a linear layer with parameters Wi ∈ Rni×mi , bi ∈ Rni

with input features x ∈ Rmi and outputs features fi ∈ Rni . Then, fi = Li(x) = Wix+ bi.

Our goal is to take LA
i ∈ LA from a model A and LB

i ∈ LB from a model B and merge them into a
layer L∗

i that combines their feature spaces such that information from both fA
i and fB

i is retained
in f∗

i . We accomplish this by merging each layer of one model with the corresponding layer in the
other, both merging features across both layers and within the same layer. This is in contrast to
permutation-based merging method, which only combine features across layers.

Problems with Permutation. Permutation methods posit that model B can be moved to the same
loss minima as model A via permutation with high-likelihood [35]. However, this is unlikely when
models are trained on different tasks because each model optimizes for task-specific minimas. In this
case the optimal permutation of model B to model A lies in a strong minima on task B but may not
lie in a minima on task A, as shown in Fig. 2. This causes the interpolated model to perform worse
than either of the two original models. Thus, we explore alternative merging methods.

Why should we merge within? Features of models trained on different tasks may be dissimilar, as
the models solve different problems. Instead, those features may be more compatible with others
within the same model, which would better retain performance when combined.

What is our merge strategy? Prior work obtains f∗
i by combining one feature from fA

i and one
from fB

i . [38, 3] determine which features to merge by computing the pairwise correlations between

2



Figure 2: Task Loss Landscapes for models in Tab. 1b. Model A and Model B lie in low loss
minimas for their own tasks, but not for the other task. Thus, any interpolation between Model A and
a permuted Model B (e.g., Git Re-basin) lies outside the minima for both tasks and thus performs
poorly. In contrast, ZipIt! improves the merge by finding a model that lies in a loss minima for both.

the neuron activations of fA
i and fB

i over a set of images. In contrast, our approach can also obtain
f∗
i by combining two features from just fA

i or fB
i . We compute the same correlations, but also

include those of fA
i and fB

i each with themselves over the same data. We then greedily choose
without replacement the pairs with highest correlation and average their features to obtain f∗

i .

Merging a layer. For every layer, we first concatenate fA
i and fB

i into fA
i ∥fB

i ∈ R2ni , and
define a “merge matrix” Mi ∈ Rni×2ni based on the matches from our greedy algorithm (i.e.,
f∗
i = Mi

(
fA
i ∥fB

i

)
). Thus, Mi merges the output spaces of LA

i , and LB
i into L∗

i . We then define an
‘unmerge” matrix Ui ∈ R2ni×ni s.t. it undoes the merge operation: Uif

∗
i ≈ fA

i ∥fB
i . Applying Ui

ensures the input spaces of the future layers LA
i+1, and LB

i+1 are aligned with current merged layer
L∗
i . Once all matrices are computed at each layer, we obtain L∗

i for a linear layer by

W ∗
i = Mi

(
WA

i 0
0 WB

i

)
Ui−1 b∗i = Mi

(
bAi
bBi

)
.

Due to space restrictions, please see Appendix. A for more details on merging other kinds of layers.

Partial Zipping. Sometimes, later layers in the networks have very uncorrelated (dissimilar) outputs.
Forcibly zipping these would lead to meaningless features. In this case, we can perform a partial zip.
That is, we zip most of the layers together, but leave the later ones unzipped—obtaining a multihead
model.

Merging Many Models (α). Sometimes, we’d like to merge more than two models together. To
do this, we allow “repeated matches”: we replace matched features from our algorithm with the
resulting merged feature instead of removing them completely. To ensure that one feature doesn’t get
merged endlessly, we set the correlations of the new feature to be the minimum of the old features’
similarities weighted by α ∈ (0, 1]. We find a small value of α typically works best.

Within-Model Merging Budget (β). To demonstrate the effectiveness of same-model merges, we
introduce a “budget” parameter β ∈ [0, 1] that denotes what percent of total merged features can
come from models merging within themselves, with each model receiving an equal portion of this
budget. A budget of 0 only allows feature merging across models and yields a permutation-merge.

4 Results

There’s no standard benchmark to evaluate merging approaches on models from distinct tasks, so
we construct our own. We evaluate our approach in two different settings. (1) A versatile test-bed:
disjoint category splits of the same dataset (i.e., same dataset and different label sets). (2) A very
challenging setting: completely different datasets and tasks (i.e., different datasets and label sets).

We compare to three baselines: Git Re-Basin [2], Weight Averaging (W. Avg) and Permute. W. Avg
involves simply average all model parameters to be merged, while we design Permute to use linear
sum assignment to find optimal permutations (following [38]) for merging. Note that Permute is a

3



Accuracies (%)
Method FLOPs (G) Joint Task A Task B Avg
Model A 0.68 48.2±1.0 97.0±0.6 45.1±8.6 71.0±4.4

Model B 0.68 48.4±3.8 49.1±9.3 96.1±1.1 72.6±4.9

W. Avg 0.68 43.0±1.6 54.1±1.4 67.5±1.2 60.8±4.5

Git Re-Basin‡ 0.68 46.2±0.8 76.8±8.9 82.7±5.1 79.8±6.5

Permute 0.68 58.4±6.8 86.6±2.1 87.4±1.1 87.4±1.4

ZipIt!20/20 0.68 79.1±1.1 92.9±1.1 91.2±1.4 92.1±1.0

Ensemble 1.37 87.4±2.6 97.0±0.6 96.1±1.1 96.6±0.4

ZipIt!13/20 0.91 83.8±3.1 95.1±0.7 94.1±1.5 94.6±0.6

(a) CIFAR-10 (5+5). ResNet-20 (4× width).

Accuracies (%)
Method FLOPs (G) Joint Task A Task B Avg
Model A 2.72 41.6±0.3 82.9±0.7 24.8±0.4 53.9±0.5

Model B 2.72 41.6±0.2 25.1±1.2 82.8±0.2 54.0±0.6

W. Avg 2.72 17.0±1.7 23.8±6.9 24.8±5.9 24.3±1.9

Git Re-Basin‡ 2.72 40.9±0.2 57.3±1.5 56.7±0.7 57.0±0.8

Permute 2.72 42.8±0.7 61.6±1.4 60.5±0.5 61.0±0.8

ZipIt!20/20 2.72 54.9±0.8 68.2±0.8 67.9±0.6 68.0±0.4

Ensemble 5.45 73.5±0.4 82.9±0.7 82.8±0.2 82.8±0.4

ZipIt!13/20 3.63 70.2±0.4 80.3±0.8 80.1±0.7 80.2±0.6

(b) CIFAR-100 (50+50). ResNet-20 (8× width).

Table 1: CIFAR Results. ZipIt! vs. baselines on combining a model trained on half the classes
(Task A) with one trained on the other half (Task B) without extra training. We report both joint
(10/100-way) and per-task (5/50-way) accuracy. ZipIt! significantly outperforms its baseline and
closes in on the upper bound (ensemble accuracy). ‡ refers to [2].

strong baseline we create and is more accurate than Git Re-Basin in our settings. For our method,
ZipIt!n/m indicates that n out of the m layers in the network have been zipped (Sec. 3). Note, all our
models have different initializations.

Disjoint Category Splits. In Tab. 1a, we merge five pairs of models trained on disjoint 5 class subsets
of CIFAR-10 using ResNet-20 with a 4× width multiplier (denoted as ResNet-20×4). We train with
a CLIP-style loss [39] using CLIP text encodings of the class names as targets so that both models
output into the same CLIP-space regardless of the category (required for [2]). We report: (1) joint
accuracy—the accuracy of each model over all classes across datasets, and (2) per task accuracy—the
accuracy of each task individually and also their average. Overall, ZipIt! performs a staggering 20.7%
better than the nearest baseline. If we allow the last stage of the network to remain unzipped (i.e., zip
up to 13 layers), our method obtains 83.8%, which is only 3.6% behind an ensemble of model A and
model B (which is practically the upper bound for this setting). We find similar results on disjoint
50 class splits of CIFAR-100 in Tab. 1b using an 8× width multiplier. ZipIt! again significantly
outperforms baselines.

Per-Task Accuracies (%)
Method FLOPs (G) SD OP CUB NAB Avg

Merging Pairs
W. Avg 4.11 12.9 18.2 13.9 0.2 11.3
Permute 4.11 46.2 47.6 35.6 13.5 35.7
ZipIt!49/50 4.11 46.9 50.7 38.0 12.7 37.1
Ensemble 8.22 72.7 81.1 71.0 77.2 75.5
ZipIt!22/50 6.39 62.6 71.2 62.8 53.0 62.4
ZipIt!10/50 7.42 66.5 75.8 65.6 66.8 68.7

Merging All 4
W. Avg 4.12 0.8 3.0 0.6 0.3 1.2
Permute 4.12 15.7 26.1 14.0 5.3 15.3
ZipIt!49/50 4.12 21.1 33.3 8.6 3.9 16.8
Ensemble 16.4 72.7 81.2 71.0 77.2 75.5
ZipIt!22/50 11.0 50.2 55.9 44.0 32.0 45.5
ZipIt!10/50 14.1 63.5 70.8 63.7 63.1 65.3

Table 2: Multi-Dataset Results. Merging
ResNet-50 models trained on completely differ-
ent datasets: Stanford Dogs (SD), Oxford Pets
(OP), CUB200 (CUB), and NABirds (NAB). We
report average per-task accuracy over merging
model pairs, and all four.

Different Datasets. We merge ResNet-50 mod-
els trained on: Stanford Dogs [40], Oxford Pets
[41], CUB200 [42], and NABirds [43]. In Tab. 2,
we show the average per task accuracy from ex-
haustively merging each pair and the much more
difficult setting of merging all four at once. We
report the accuracy of our baselines by applying
them up until the last layer, but we can’t compare
to [2] as it requires shared output space.

For pairs of models, ZipIt! slightly outperforms
our permute baseline across all tasks and performs
similarly when merging all 4 models at once. How-
ever, if we add capacity to the merged model
through partial zipping, we perform up to 33%
better on merging pairs and 50% better on merg-
ing all four models than the permute baseline.

We also merge the ResNet-50 backbone of a
DeeplabV3 [44] segmentation model that achieves
76.8% mIoU on PASCAL VOC [45] with an ImageNet-1k [46] classification model that obtains
77.8% accuracy. ZipIt! can still achieve good performance on both tasks even with half of layers
merged: obtaining 64.4% mIoU on PASCAL VOC and 60.9% accuracy on ImageNet-1k.

5 Conclusion

In this paper, we tackle the extremely difficult task of merging models trained on completely disjoint
tasks without additional training. We find that prior work underperforms in this setting and posit
that they neither fully (1) exploit model similarities nor (2) account for model dissimilarities. We
introduce ZipIt!, a general framework for merging models that addresses these issues, and show it to
significantly outperform prior work across several difficult settings.

4



References
[1] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,

Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In ICML, 2022.

[2] Samuel K Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models
modulo permutation symmetries. arXiv:2209.04836, 2022.

[3] Keller Jordan, Hanie Sedghi, Olga Saukh, Rahim Entezari, and Behnam Neyshabur. Repair:
Renormalizing permuted activations for interpolation repair. arXiv:2211.08403, 2022.

[4] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In ICML, 2019.

[5] Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer
learning? NeurIPS, 2020.

[6] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E Hopcroft, and Kilian Q Weinberger.
Snapshot ensembles: Train 1, get m for free. arXiv:1704.00109, 2017.

[7] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon
Wilson. Averaging weights leads to wider optima and better generalization. UAI, 2018.

[8] Johannes Von Oswald, Seijin Kobayashi, Joao Sacramento, Alexander Meulemans, Christian
Henning, and Benjamin F Grewe. Neural networks with late-phase weights. arXiv:2007.12927,
2020.

[9] Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca
Roelofs, Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, et al.
Robust fine-tuning of zero-shot models. In CVPR, 2022.

[10] Gabriel Ilharco, Mitchell Wortsman, Samir Yitzhak Gadre, Shuran Song, Hannaneh Hajishirzi,
Simon Kornblith, Ali Farhadi, and Ludwig Schmidt. Patching open-vocabulary models by
interpolating weights. NeurIPS, 2022.

[11] Shachar Don-Yehiya, Elad Venezian, Colin Raffel, Noam Slonim, and Leshem Choshen. ColD
fusion: Collaborative descent for distributed multitask finetuning. Association for Computational
Linguistics, 2023.

[12] Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results. NeurIPS, 2017.

[13] Zhaowei Cai, Avinash Ravichandran, Subhransu Maji, Charless Fowlkes, Zhuowen Tu, and
Stefano Soatto. Exponential moving average normalization for self-supervised and semi-
supervised learning. In CVPR, 2021.

[14] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. NeurIPS, 2020.

[15] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. In ICCV, 2021.

[16] Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, and Michael Auli.
Data2vec: A general framework for self-supervised learning in speech, vision and language. In
ICML, 2022.

[17] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics. PMLR, 2017.

[18] Leshem Choshen, Elad Venezian, Noam Slonim, and Yoav Katz. Fusing finetuned models for
better pretraining. arXiv:2204.03044, 2022.

5



[19] Alexandre Ramé, Kartik Ahuja, Jianyu Zhang, Matthieu Cord, Léon Bottou, and David Lopez-
Paz. Recycling diverse models for out-of-distribution generalization. arXiv:2212.10445, 2022.

[20] Stephen Ashmore and Michael Gashler. A method for finding similarity between multi-layer
perceptrons by forward bipartite alignment. In IJCNN, 2015.

[21] Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and
Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. In ICML,
2019.

[22] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni.
Federated learning with matched averaging. arXiv:2002.06440, 2020.

[23] Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv:2212.04089,
2022.

[24] Almog Gueta, Elad Venezian, Colin Raffel, Noam Slonim, Yoav Katz, and Leshem Choshen.
Knowledge is a region in weight space for fine-tuned language models. arXiv:2302.04863,
2023.

[25] Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Resolving
interference when merging models. arXiv:2306.01708, 2023.

[26] Yi-Lin Sung, Linjie Li, Kevin Lin, Zhe Gan, Mohit Bansal, and Lijuan Wang. An empirical
study of multimodal model merging, 2023.

[27] Michael Matena and Colin Raffel. Merging models with fisher-weighted averaging.
arXiv:2111.09832, 2021.

[28] C Daniel Freeman and Joan Bruna. Topology and geometry of half-rectified network optimiza-
tion. arXiv:1611.01540, 2016.

[29] Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson.
Loss surfaces, mode connectivity, and fast ensembling of dnns. NeurIPS, 2018.

[30] Felix Draxler, Kambis Veschgini, Manfred Salmhofer, and Fred Hamprecht. Essentially no
barriers in neural network energy landscape. In ICML, 2018.

[31] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In ICML, 2020.

[32] Norman Tatro, Pin-Yu Chen, Payel Das, Igor Melnyk, Prasanna Sattigeri, and Rongjie Lai.
Optimizing mode connectivity via neuron alignment. NeurIPS, 2020.

[33] Sidak Pal Singh and Martin Jaggi. Model fusion via optimal transport. NeurIPS, 2020.

[34] Chang Liu, Chenfei Lou, Runzhong Wang, Alan Yuhan Xi, Li Shen, and Junchi Yan. Deep
neural network fusion via graph matching with applications to model ensemble and federated
learning. In ICML, 2022.

[35] Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks. arXiv:2110.06296, 2021.

[36] Fidel A Guerrero Peña, Heitor Rapela Medeiros, Thomas Dubail, Masih Aminbeidokhti, Eric
Granger, and Marco Pedersoli. Re-basin via implicit sinkhorn differentiation. arXiv:2212.12042,
2022.

[37] Xiaoxi He, Zimu Zhou, and Lothar Thiele. Multi-task zipping via layer-wise neuron sharing.
NeurIPS, 2018.

[38] Yixuan Li, Jason Yosinski, Jeff Clune, Hod Lipson, and John Hopcroft. Convergent Learning:
Do different neural networks learn the same representations? arXiv:1511.07543, 2015.

6



[39] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, 2021.

[40] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-Fei Li. Novel dataset for
fine-grained image categorization: Stanford dogs. In CVPR Workshop on Fine-Grained Visual
Categorization (FGVC), 2011.

[41] Omkar M. Parkhi, Andrea Vedaldi, Andrew Zisserman, and C. V. Jawahar. Cats and dogs. In
CVPR, 2012.

[42] P. Welinder, S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona. Caltech-UCSD
Birds 200. Technical Report CNS-TR-2010-001, California Institute of Technology, 2010.

[43] Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber, Jessie Barry, Panos Ipeirotis, Pietro
Perona, and Serge Belongie. Building a bird recognition app and large scale dataset with citizen
scientists: The fine print in fine-grained dataset collection. In CVPR, 2015.

[44] Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Rethinking atrous
convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587, 2017.

[45] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The pascal visual
object classes (voc) challenge. International Journal of Computer Vision, 88(2):303–338, June
2010.

[46] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, 2009.

[47] Thomas Uriot and Dario Izzo. Safe crossover of neural networks through neuron alignment. In
GECCO, 2020.

[48] Aditya Kumar Akash, Sixu Li, and Nicolás Garcı́a Trillos. Wasserstein barycenter-based model
fusion and linear mode connectivity of neural networks. arXiv:2210.06671, 2022.

[49] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 2017.

[50] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba.
Scene parsing through ade20k dataset. In CVPR, 2017.

[51] Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren Jansen, Wade Lawrence, R Channing
Moore, Manoj Plakal, and Marvin Ritter. Audio set: An ontology and human-labeled dataset
for audio events. In ICASSP, 2017.

[52] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In ICCV, 2017.

[53] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos: Fully convolutional one-stage object
detection. In ICCV, 2019.

[54] Daniel Bolya, Chong Zhou, Fanyi Xiao, and Yong Jae Lee. Yolact: Real-time instance
segmentation. In ICCV, 2019.

[55] Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring plain vision transformer
backbones for object detection. In ECCV, 2022.

[56] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative
adversarial networks. In CVPR, 2018.

[57] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-resolution image synthesis with latent diffusion models. In CVPR, 2022.

[58] Zhizhong Li and Derek Hoiem. Learning without forgetting. TPAMI, 2017.

[59] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah Parisot, Xu Jia, Aleš Leonardis,
Gregory Slabaugh, and Tinne Tuytelaars. A continual learning survey: Defying forgetting in
classification tasks. TPAMI, 2021.

7



[60] Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang Chen,
Wenjun Zeng, and Philip Yu. Generalizing to unseen domains: A survey on domain generaliza-
tion. TKDE, 2022.

[61] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. 2016.

[62] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[63] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. arXiv:1803.03635, 2018.

[64] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. arXiv:2010.11929,
2020.

[65] Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. Singan: Learning a generative model
from a single natural image. In ICCV, 2019.

[66] J MacQueen. Classification and analysis of multivariate observations. In 5th Berkeley Symp.
Math. Statist. Probability, 1967.

[67] Louis L McQuitty. Elementary linkage analysis for isolating orthogonal and oblique types and
typal relevancies. Educational and psychological measurement, 1957.

[68] Wei-Hong Li and Hakan Bilen. Knowledge distillation for multi-task learning. In ECCV, 2020.

[69] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. NeurIPS,
2020.

[70] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transform-
ers. In CVPR, 2022.

[71] Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin
Gilmer, Andreas Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al.
Scaling vision transformers to 22 billion parameters. arXiv:2302.05442, 2023.

[72] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins,
Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,
et al. Overcoming catastrophic forgetting in neural networks. PNAS, 2017.

[73] Krikamol Muandet, David Balduzzi, and Bernhard Schölkopf. Domain generalization via
invariant feature representation. In ICML, 2013.

[74] Gilles Blanchard, Gyemin Lee, and Clayton Scott. Generalizing from several related classifica-
tion tasks to a new unlabeled sample. In NeurIPS, 2011.

[75] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[76] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan,
Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV,
2014.

[77] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. NeurIPS, 2015.

[78] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network structure, dynamics,
and function using networkx. In Proceedings of the 7th Python in Science Conference, 2008.

[79] Daniel Bolya, Cheng-Yang Fu, Xiaoliang Dai, Peizhao Zhang, Christoph Feichtenhofer, and
Judy Hoffman. Token merging: Your vit but faster. ICLR, 2023.

8



[80] Hongjoon Ahn, Jihwan Kwak, Subin Lim, Hyeonsu Bang, Hyojun Kim, and Taesup Moon.
Ss-il: Separated softmax for incremental learning. In ICCV, 2021.

[81] Berfin Simsek, François Ged, Arthur Jacot, Francesco Spadaro, Clement Hongler, Wulfram
Gerstner, and Johanni Brea. Geometry of the loss landscape in overparameterized neural
networks: Symmetries and invariances. In Proceedings of the 38th International Conference on
Machine Learning. PMLR, 2021.

[82] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks (invited paper). In Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing, 2021.

9



A Layer Merging Details

Given Mi and Ui, here we describe rules more concretely for each layer type needed to define most
convnets.

Conv. Apply Mi and Ui to each kernel location (i.e., move the k × k kernel dimensions to the batch
dimension).

BatchNorm. Apply Mi to all parameters (weight, bias, mean, variance), squaring it for the variance
term. Continue propagation. As [3] points out, we cannot compute the correct variance without
knowing the covariance between the two models (which we don’t have access to). Thus, we reset
batch norms after merging to evaluate the variance correctly.

LayerNorm. Apply Mi to all parameters (weight, bias). Since LayerNorm computes mean and
standard deviation on the fly, we don’t need to do anything special.

Avg / Max Pool. Skip.

Skip Connection. Apply the same Mi to each layer whose outputs are combined via the residual so
that their output spaces are all aligned.

10


