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Abstract

We tackle the extremely difficult problem of combining distinct models with
different initializations, each solving a separate task, into one multi-task model
without any additional training. Prior work in model merging permutes one
model to the space of the other then averages them together. While this works for
models trained on the same task, we find that this fails to account for the differences
in models trained on disjoint tasks. Thus, we introduce “ZipIt!”, a general method
for merging two arbitrary models of the same architecture that incorporates two
simple strategies. First, in order to account for features that aren’t shared between
models, we expand the model merging problem to allow for merging features
within each model by defining a general “zip” operation. Second, we add support
for partially zipping the models up until a specified layer, naturally creating a multi-
head model. We find that these two changes combined account for a staggering
20-50% improvement over prior work,

1 Introduction

Combining multiple models into one without training has recently started to gain traction in the
vision community. Model Soups [1] can add multiple models finetuned from the same pretrained
initialization to improve accuracy and robustness. Git Re-Basin [2] generalizes further to models
trained on the same data but with different initializations, though with a significant accuracy drop.
REPAIR [3] improves on Git Re-Basin by adding new parameters and adjusting model batch norms
where applicable. However, all of these methods only combine models trained on the same task.
In this paper, we take this line of work to a logical extreme: merging differently initialized models
trained on completely separate tasks (see Fig. 1ab). We show that this is an incredibly difficult
problem for prior work and employ two simple strategies to make it feasible.

First, prior work focuses on permuting one model to the other when merging them. This inherently
assumes that most features across them are correlated. But, this is not always the case for models
trained on different tasks. Instead, we generalize model merging to support “zipping” any combination
of correlated features within and across each model. We find that on some tasks, this alone improves
accuracy by up to 20% vs. permutation-based approaches

Second, the features of models trained on disjoint tasks become less correlated over the course of the
network [4]. Thus, we introduce partial zipping, which allows us to only “zip” up to a specified layer.
Afterward, we feed the merged model’s outputs to the remaining unmerged layers of the original
networks, creating a multi-head model. Partially zipping can improve accuracy by over 15%.

ZipIt! (Fig. 1c) incorporates both strategies to “zip” models trained on different tasks into a single
multitask model without retraining. ZipIt! is general and supports merging arbitrary models of the
same architecture together (Sec. 3). We validate ZipIt! by merging models trained on different tasks
(including classification and segmentation) into one, significantly outperforming prior work (Sec. 4).

∗Equal Contribution. Code: https://github.com/gstoica27/ZipIt.
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Figure 1: Setting and ZipIt! (a) Prior work merges models from the same dataset with the same
label sets: e.g., merging two models both trained to classify dog breeds. (b) Our setting expands to
merging models from different datasets with different label sets: e.g., merging a model that classifies
dog breeds with one that classifies bird species. (c) ZipIt! merges these models without retraining by
identifying shared features. Depending on the task, ZipIt! can nearly match ensemble performance.

2 Related Work

Model merging combines the weights of two or more models into a one. Our work differs from prior
work in that we merge differently initialized models trained on disjoint tasks (Fig. 1) without training.

Merging Finetuned Models. If two models are finetuned from the same pretrained checkpoint,
they often lie in the same error minima [5]. [6, 7, 8, 9, 10, 11] have exploited this property to
average together the weights of a model at different stages of training. [12, 13, 14, 15, 16] use an
“exponential moving average” of training checkpoints as a teacher for additional self-supervised
learning. Other works, [1, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27] merge models fully finetuned to
improve performance on a task. Our setting differs, as we do not assume the same initialization.

Merging Differently Initialized Models. Works in this space often merge models trained on the
same task and rely on mode connectivity [28, 29, 30, 31, 32, 33, 34], as differently initialized models
may not lie in the same error minima [29, 35]. Most recent work follows the intuition formalized
by [35] that models permuted to the same loss minima can be merged by averaging their weights
[35, 2, 3, 36]. Similar to ZipIt! [37] merges models of different tasks, but requires jointly finetuning
on all tasks after each layer merge. As far as we are aware, we present the first general method to
successfully merge models trained on disjoint tasks without additional training.

3 ZipIt!

In this work, we treat model merging as combining the checkpoints (i.e., collection of weights) of
multiple models layer-by-layer into a single checkpoint that can perform all the tasks of its constituents.
Consider a model L as a collection of layers Li ∈ L, each of which may have some parameters (e.g.,
Wi, bi for a linear layer). Suppose Li ∈ L is a linear layer with parameters Wi ∈ Rni×mi , bi ∈ Rni

with input features x ∈ Rmi and outputs features fi ∈ Rni . Then, fi = Li(x) = Wix+ bi.

Our goal is to take LA
i ∈ LA from a model A and LB

i ∈ LB from a model B and merge them into a
layer L∗

i that combines their feature spaces such that information from both fA
i and fB

i is retained
in f∗

i . We accomplish this by merging each layer of one model with the corresponding layer in the
other, both merging features across both layers and within the same layer. This is in contrast to
permutation-based merging method, which only combine features across layers.

Problems with Permutation. Permutation methods posit that model B can be moved to the same
loss minima as model A via permutation with high-likelihood [35]. However, this is unlikely when
models are trained on different tasks because each model optimizes for task-specific minimas. In this
case the optimal permutation of model B to model A lies in a strong minima on task B but may not
lie in a minima on task A, as shown in Fig. 2. This causes the interpolated model to perform worse
than either of the two original models. Thus, we explore alternative merging methods.

Why should we merge within? Features of models trained on different tasks may be dissimilar, as
the models solve different problems. Instead, those features may be more compatible with others
within the same model, which would better retain performance when combined.

What is our merge strategy? Prior work obtains f∗
i by combining one feature from fA

i and one
from fB

i . [38, 3] determine which features to merge by computing the pairwise correlations between
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Figure 2: Task Loss Landscapes for models in Tab. 1b. Model A and Model B lie in low loss
minimas for their own tasks, but not for the other task. Thus, any interpolation between Model A and
a permuted Model B (e.g., Git Re-basin) lies outside the minima for both tasks and thus performs
poorly. In contrast, ZipIt! improves the merge by finding a model that lies in a loss minima for both.

the neuron activations of fA
i and fB

i over a set of images. In contrast, our approach can also obtain
f∗
i by combining two features from just fA

i or fB
i . We compute the same correlations, but also

include those of fA
i and fB

i each with themselves over the same data. We then greedily choose
without replacement the pairs with highest correlation and average their features to obtain f∗

i .

Merging a layer. For every layer, we first concatenate fA
i and fB

i into fA
i ∥fB

i ∈ R2ni , and
define a “merge matrix” Mi ∈ Rni×2ni based on the matches from our greedy algorithm (i.e.,
f∗
i = Mi

(
fA
i ∥fB

i

)
). Thus, Mi merges the output spaces of LA

i , and LB
i into L∗

i . We then define an
‘unmerge” matrix Ui ∈ R2ni×ni s.t. it undoes the merge operation: Uif

∗
i ≈ fA

i ∥fB
i . Applying Ui

ensures the input spaces of the future layers LA
i+1, and LB

i+1 are aligned with current merged layer
L∗
i . Once all matrices are computed at each layer, we obtain L∗

i for a linear layer by

W ∗
i = Mi

(
WA

i 0
0 WB

i

)
Ui−1 b∗i = Mi

(
bAi
bBi

)
.

Due to space restrictions, please see Appendix. A for more details on merging other kinds of layers.

Partial Zipping. Sometimes, later layers in the networks have very uncorrelated (dissimilar) outputs.
Forcibly zipping these would lead to meaningless features. In this case, we can perform a partial zip.
That is, we zip most of the layers together, but leave the later ones unzipped—obtaining a multihead
model.

Merging Many Models (α). Sometimes, we’d like to merge more than two models together. To
do this, we allow “repeated matches”: we replace matched features from our algorithm with the
resulting merged feature instead of removing them completely. To ensure that one feature doesn’t get
merged endlessly, we set the correlations of the new feature to be the minimum of the old features’
similarities weighted by α ∈ (0, 1]. We find a small value of α typically works best.

Within-Model Merging Budget (β). To demonstrate the effectiveness of same-model merges, we
introduce a “budget” parameter β ∈ [0, 1] that denotes what percent of total merged features can
come from models merging within themselves, with each model receiving an equal portion of this
budget. A budget of 0 only allows feature merging across models and yields a permutation-merge.

4 Results

There’s no standard benchmark to evaluate merging approaches on models from distinct tasks, so
we construct our own. We evaluate our approach in two different settings. (1) A versatile test-bed:
disjoint category splits of the same dataset (i.e., same dataset and different label sets). (2) A very
challenging setting: completely different datasets and tasks (i.e., different datasets and label sets).

We compare to three baselines: Git Re-Basin [2], Weight Averaging (W. Avg) and Permute. W. Avg
involves simply average all model parameters to be merged, while we design Permute to use linear
sum assignment to find optimal permutations (following [38]) for merging. Note that Permute is a
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Accuracies (%)
Method FLOPs (G) Joint Task A Task B Avg
Model A 0.68 48.2±1.0 97.0±0.6 45.1±8.6 71.0±4.4

Model B 0.68 48.4±3.8 49.1±9.3 96.1±1.1 72.6±4.9

W. Avg 0.68 43.0±1.6 54.1±1.4 67.5±1.2 60.8±4.5

Git Re-Basin‡ 0.68 46.2±0.8 76.8±8.9 82.7±5.1 79.8±6.5

Permute 0.68 58.4±6.8 86.6±2.1 87.4±1.1 87.4±1.4

ZipIt!20/20 0.68 79.1±1.1 92.9±1.1 91.2±1.4 92.1±1.0

Ensemble 1.37 87.4±2.6 97.0±0.6 96.1±1.1 96.6±0.4

ZipIt!13/20 0.91 83.8±3.1 95.1±0.7 94.1±1.5 94.6±0.6

(a) CIFAR-10 (5+5). ResNet-20 (4× width).

Accuracies (%)
Method FLOPs (G) Joint Task A Task B Avg
Model A 2.72 41.6±0.3 82.9±0.7 24.8±0.4 53.9±0.5

Model B 2.72 41.6±0.2 25.1±1.2 82.8±0.2 54.0±0.6

W. Avg 2.72 17.0±1.7 23.8±6.9 24.8±5.9 24.3±1.9

Git Re-Basin‡ 2.72 40.9±0.2 57.3±1.5 56.7±0.7 57.0±0.8

Permute 2.72 42.8±0.7 61.6±1.4 60.5±0.5 61.0±0.8

ZipIt!20/20 2.72 54.9±0.8 68.2±0.8 67.9±0.6 68.0±0.4

Ensemble 5.45 73.5±0.4 82.9±0.7 82.8±0.2 82.8±0.4

ZipIt!13/20 3.63 70.2±0.4 80.3±0.8 80.1±0.7 80.2±0.6

(b) CIFAR-100 (50+50). ResNet-20 (8× width).

Table 1: CIFAR Results. ZipIt! vs. baselines on combining a model trained on half the classes
(Task A) with one trained on the other half (Task B) without extra training. We report both joint
(10/100-way) and per-task (5/50-way) accuracy. ZipIt! significantly outperforms its baseline and
closes in on the upper bound (ensemble accuracy). ‡ refers to [2].

strong baseline we create and is more accurate than Git Re-Basin in our settings. For our method,
ZipIt!n/m indicates that n out of the m layers in the network have been zipped (Sec. 3). Note, all our
models have different initializations.

Disjoint Category Splits. In Tab. 1a, we merge five pairs of models trained on disjoint 5 class subsets
of CIFAR-10 using ResNet-20 with a 4× width multiplier (denoted as ResNet-20×4). We train with
a CLIP-style loss [39] using CLIP text encodings of the class names as targets so that both models
output into the same CLIP-space regardless of the category (required for [2]). We report: (1) joint
accuracy—the accuracy of each model over all classes across datasets, and (2) per task accuracy—the
accuracy of each task individually and also their average. Overall, ZipIt! performs a staggering 20.7%
better than the nearest baseline. If we allow the last stage of the network to remain unzipped (i.e., zip
up to 13 layers), our method obtains 83.8%, which is only 3.6% behind an ensemble of model A and
model B (which is practically the upper bound for this setting). We find similar results on disjoint
50 class splits of CIFAR-100 in Tab. 1b using an 8× width multiplier. ZipIt! again significantly
outperforms baselines.

Per-Task Accuracies (%)
Method FLOPs (G) SD OP CUB NAB Avg

Merging Pairs
W. Avg 4.11 12.9 18.2 13.9 0.2 11.3
Permute 4.11 46.2 47.6 35.6 13.5 35.7
ZipIt!49/50 4.11 46.9 50.7 38.0 12.7 37.1
Ensemble 8.22 72.7 81.1 71.0 77.2 75.5
ZipIt!22/50 6.39 62.6 71.2 62.8 53.0 62.4
ZipIt!10/50 7.42 66.5 75.8 65.6 66.8 68.7

Merging All 4
W. Avg 4.12 0.8 3.0 0.6 0.3 1.2
Permute 4.12 15.7 26.1 14.0 5.3 15.3
ZipIt!49/50 4.12 21.1 33.3 8.6 3.9 16.8
Ensemble 16.4 72.7 81.2 71.0 77.2 75.5
ZipIt!22/50 11.0 50.2 55.9 44.0 32.0 45.5
ZipIt!10/50 14.1 63.5 70.8 63.7 63.1 65.3

Table 2: Multi-Dataset Results. Merging
ResNet-50 models trained on completely differ-
ent datasets: Stanford Dogs (SD), Oxford Pets
(OP), CUB200 (CUB), and NABirds (NAB). We
report average per-task accuracy over merging
model pairs, and all four.

Different Datasets. We merge ResNet-50 mod-
els trained on: Stanford Dogs [40], Oxford Pets
[41], CUB200 [42], and NABirds [43]. In Tab. 2,
we show the average per task accuracy from ex-
haustively merging each pair and the much more
difficult setting of merging all four at once. We
report the accuracy of our baselines by applying
them up until the last layer, but we can’t compare
to [2] as it requires shared output space.

For pairs of models, ZipIt! slightly outperforms
our permute baseline across all tasks and performs
similarly when merging all 4 models at once. How-
ever, if we add capacity to the merged model
through partial zipping, we perform up to 33%
better on merging pairs and 50% better on merg-
ing all four models than the permute baseline.

We also merge the ResNet-50 backbone of a
DeeplabV3 [44] segmentation model that achieves
76.8% mIoU on PASCAL VOC [45] with an ImageNet-1k [46] classification model that obtains
77.8% accuracy. ZipIt! can still achieve good performance on both tasks even with half of layers
merged: obtaining 64.4% mIoU on PASCAL VOC and 60.9% accuracy on ImageNet-1k.

5 Conclusion

In this paper, we tackle the extremely difficult task of merging models trained on completely disjoint
tasks without additional training. We find that prior work underperforms in this setting and posit
that they neither fully (1) exploit model similarities nor (2) account for model dissimilarities. We
introduce ZipIt!, a general framework for merging models that addresses these issues, and show it to
significantly outperform prior work across several difficult settings.
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A Layer Merging Details

Given Mi and Ui, here we describe rules more concretely for each layer type needed to define most
convnets.

Conv. Apply Mi and Ui to each kernel location (i.e., move the k × k kernel dimensions to the batch
dimension).

BatchNorm. Apply Mi to all parameters (weight, bias, mean, variance), squaring it for the variance
term. Continue propagation. As [3] points out, we cannot compute the correct variance without
knowing the covariance between the two models (which we don’t have access to). Thus, we reset
batch norms after merging to evaluate the variance correctly.

LayerNorm. Apply Mi to all parameters (weight, bias). Since LayerNorm computes mean and
standard deviation on the fly, we don’t need to do anything special.

Avg / Max Pool. Skip.

Skip Connection. Apply the same Mi to each layer whose outputs are combined via the residual so
that their output spaces are all aligned.
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